This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis and Properties of 1-Amino-2-Arylethylphosphonic and-Phosphinic Acids as Well as- Phosphine Oxides

Ludwig Maiera

^a CIBA-GEIGY Ltd., Division Agro, Basel, Switzerland

To cite this Article Maier, Ludwig(1990) 'Synthesis and Properties of 1-Amino-2-Arylethylphosphonic and- Phosphinic Acids as Well as- Phosphine Oxides', Phosphorus, Sulfur, and Silicon and the Related Elements, 51: 1, 7-10

To link to this Article: DOI: 10.1080/10426509008040669 URL: http://dx.doi.org/10.1080/10426509008040669

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND PROPERTIES OF 1-AMINO-2-ARYLETHYLPHOS-PHONIC AND

-PHOSPHINIC ACIDS AS WELL AS -PHOSPHINE OXIDES 1

by Ludwig MAIER
CIBA-GEIGY Ltd., Division Agro, 4002 Basel, Switzerland

<u>Abstract:</u> The preparation, physical, spectroscopic and biological properties of I-amino-2-arylethylphosphonic, and -phosphinic acids as well as -phosphine oxides, the phosphorus analogues of phenylalanine are described.

Results and Discussion

The study of phosphorus analogues of the natural α -amino acids has accelerated in the past ten years, not least due to the finding of molecules with useful biological acitivity. In a recent review article we have summarized our knowledge in this area². Furthermore they find increasing use as a tool in investigating the metabolism of natural amino acids³.

The family of 1-aminoalkylphosphonic acids has been most studied and to date analogues of all the common protein amino acids have been described. Several procedures are known of the preparation of the phosphonic acid analog of phenylalanine but for the synthesis of differently substituted 1-amino-2-arylethylphosphonic acid derivatives the modified procedure of Ratcliffe and Christensen⁴ is best suited. Furthermore we observed that this procedure can be extended to the preparation of the corresponding phosphinic acid and phosphine oxide derivatives. In addition this method has the advantage that a large number of aryl- and alkyl substituted 1-aminophosphonic- and -phosphinic acids and derivatives can be prepared from the same starting materials. α -Methylsubstituted derivatives were obtained either by double alkylation of N-benzylidenaminomethylphospho-

nate or by the interaction of the corresponding Schiff' base with secondary phosphites.

Reactions of 1-amino-2-aryl-ethylphosphonates

The 1-amino-2-aryl-ethylphosphonates give all the reactions typical for a primary amine. Thus the interaction of 2 (X = 4-F) and dimethylformamid-dimethylacetal gives a formamidine, with isocyanates a urea derivative is obtained, and acylation with formate, oxalate or chloroacetic anhydride produces the acylated derivatives. Arylation with trifluoromethyl-dinitro-chlorobenzene proceeds well and gives the N-arylated compound in 63% yield. A dipeptide is obtained when 2 is treated with Z-L-alanine in the presence of dicyclohexylcarbodiimide and a diphenylether derivative is formed when 2 is caused to react with 3,4-dinitro-2'-chloro-4'-trifluoromethyl-diphenylether. Other 1-amino-2-aryl-ethylphosphonates react similarly.

Biological activity

Several of the 1-amino-2-substituted arylethyl-phosphonic acids inhibit one of the key enzymes of plant metabolism the phenylalanine ammonia lyase (PAL)⁵. The results so far obtained indicate that the PAL-inhibition is associated with the phosphonic group, since the corresponding phosphonous and phosphinic acid derivatives are much less active. The phosphine oxide 1-amino-2-phenylethyl-dimethylphosphine oxide shows no inhibition of PAL. The inhibition of the anthocyansynthesis in buck-wheat-hypocotyledons is comparable with the PAI inhibition, the same order of activity seems to exists. A comparison of the activity of racemic 1-amino-2-(4-fluorophenyl)ethylphosphonic acid 3f and racemic 4-fluorophenylalanine shows that 3f is a better inhibitor (by two orders of magnitude) of anthocyansynthesis than 4-fluorophenylalanine. This indicates that the inhibition is mainly due to the introduction of the phosphonic acid group.

[10]/480 L.MAIER

We observed that many of the 1-amino-2-arylethylphosphonic acids are quite active botryticides, the order of activity being comparable to the inhibition constants of PAL.

The fluoro-derivative 3f is also highly effective as a seeddressing agent showing a 100% protection against the fungus Fusarium nivale at 600 ppm⁶.

References

- Extended version of a lecture given at the First National Phosphorus Congress, Chinese Chemical Society, Beijing, May 30 to June 2, (1988).
- 2. L. Maier, Phosphorus and Sulfur, 14, 295 (1983).
- A. Iron, M. Ruart, J.P. Duboy, M. Beranger, A. Cassaigne and E. Neuzil, Biochem. Soc. Trans. 9, 246 (1981).
- 4. R.W. Ratcliffe and B.G. Christensen, Tetrahedron Letts., 4645 (1973).
- N. Amrhein, personal communication; B. Laber, H.H. Kiltz and N. Amrhein, Z. Naturforschung, 41c, 49 (1986).
- 6. CIBA-GEIGY AG, EP 207 890 (1987); inv. L. Maier